⚛️
Linear Algebra
  • Basic Operations
  • Norms
  • Vector Properties
  • Matrix Properties
  • Special Matrices & Vectors
  • Eigen Decomposition
  • Quadratic Forms & Positive Definiteness
  • Singular Value Decomposition
Powered by GitBook
On this page

Singular Value Decomposition

PreviousQuadratic Forms & Positive Definiteness

Last updated 2 years ago

Singular Value Decomposition or SVD is generalization of factorization to non-square matrices. The factorizing of matrices is based upon stretch and rotation.

If A(Rm×n)A (\mathbb{R}^{m \times n})A(Rm×n)​ is a matrix, then

A=UDVT,whereU∈Rm×mandorthogonal.V∈Rn×nandorthogonal.D∈Rm×ndiagonal.Onlydiagonalentriesarenonzero.A = UDV^T, where \\ U \in \mathbb{R^{m \times m}} \hspace{0.2cm} and \hspace{0.1cm} orthogonal. \\ V \in \mathbb{R^{n \times n}} \hspace{0.2cm} and \hspace{0.1cm} orthogonal. \\ D \in \mathbb{R^{m \times n}} \hspace{0.2cm} diagonal. \hspace{0.1cm} Only \hspace{0.1cm} diagonal \hspace{0.1cm} entries \hspace{0.1cm} are \hspace{0.1cm} non \hspace{0.1cm} zero.A=UDVT,whereU∈Rm×mandorthogonal.V∈Rn×nandorthogonal.D∈Rm×ndiagonal.Onlydiagonalentriesarenonzero.

Elements of UUU: Eigen vectors of AATAA^TAAT, called left singular vectors.

Elements of VVV​: Eigen vectors of ATAA^TAATA​, called right singular vectors.

Non-zero elements of DDD​: λ(ATA)\sqrt{\lambda(A^TA)}λ(ATA)​​, called singular values. λ(ATA)\lambda(A^TA)λ(ATA)​ are the eigen values of ATAA^TAATA.

Page cover image