Page cover

Singular Value Decomposition

Singular Value Decomposition or SVD is generalization of factorization to non-square matrices. The factorizing of matrices is based upon stretch and rotation.

If A(Rm×n)A (\mathbb{R}^{m \times n})​ is a matrix, then

A=UDVT,whereURm×mandorthogonal.VRn×nandorthogonal.DRm×ndiagonal.Onlydiagonalentriesarenonzero.A = UDV^T, where \\ U \in \mathbb{R^{m \times m}} \hspace{0.2cm} and \hspace{0.1cm} orthogonal. \\ V \in \mathbb{R^{n \times n}} \hspace{0.2cm} and \hspace{0.1cm} orthogonal. \\ D \in \mathbb{R^{m \times n}} \hspace{0.2cm} diagonal. \hspace{0.1cm} Only \hspace{0.1cm} diagonal \hspace{0.1cm} entries \hspace{0.1cm} are \hspace{0.1cm} non \hspace{0.1cm} zero.

Elements of UU: Eigen vectors of AATAA^T, called left singular vectors.

Elements of VV​: Eigen vectors of ATAA^TA​, called right singular vectors.

Non-zero elements of DD​: λ(ATA)\sqrt{\lambda(A^TA)}​, called singular values. λ(ATA)\lambda(A^TA)​ are the eigen values of ATAA^TA.

Last updated