Page cover

Matrix Properties

Trace

Trace of a matrix is the sum of its diagonal elements:

Tr(A)=iAiiTr(A) = \sum_iA_{ii}

Further,

Tr(A+B)=Tr(A)+Tr(B)Tr(AB)=Tr(BA),evenifABBATr(A)=Tr(AT)Tr(A+B) = Tr(A) + Tr(B) \\ Tr(AB) = Tr(BA), \hspace{0.1cm}even\hspace{0.1cm}if\hspace{0.1cm}AB \neq BA \\ Tr(A) = Tr(A^T)

​Determinant

For a matrix, A=[a11a12a21a22]A = \begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{bmatrix}​, it's determinant is given by:

A=a11a22a12a22|A| = a_{11}a_{22} - a_{12}a_{22}

For a 3×33 \times 3 matrix, A=[abcdefghi]A = \begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i \end{bmatrix}​, it's determinant is given by:

A=a(eifh)b(difg)+c(dheg)|A| = a(ei-fh) - b(di-fg) + c(dh - eg)

​For a 4×44 \times 4​ matrix, the determinant is given by:

A=[a×fghjklnop][b×eghiklmop]+[c×efhijlmnp][d×efgIjkmno]|A| = \begin{bmatrix} a \times \begin{vmatrix} f & g & h\\ j & k & l\\ n & o & p \end{vmatrix} \end{bmatrix} - \begin{bmatrix} b \times \begin{vmatrix} e & g & h\\ i & k & l\\ m & o & p \end{vmatrix} \end{bmatrix} + \begin{bmatrix} c \times \begin{vmatrix} e & f & h\\ i & j & l\\ m & n & p \end{vmatrix} \end{bmatrix} - \begin{bmatrix} d \times \begin{vmatrix} e & f & g\\ I& j & k\\ m & n & o \end{vmatrix} \end{bmatrix}

Physically, determinant represents volume formed by column vectors.

Invertibility

A square matrix AA is invertible if and only if det(A)0det(A) \neq 0. This automatically means that columns of AA​ are linearly independent. For example,

A=[v1v2...vn]v1=(a11,a21,...,an1)v2=(a12,a22,...,an2)vn=(a1n,a2n,...,ann)A = \begin{bmatrix} v_1 & v_2 & ... & v_n\\ \end{bmatrix} \\ v_1 = (a_{11}, a_{21}, ... , a_{n1}) \\ v_2 = (a_{12}, a_{22}, ... , a_{n2}) \\ v_n = (a_{1n}, a_{2n}, ... , a_{nn})

​Let's presume the following:

vn=α1v1+α2v2+...+αn1vn1v_n = \alpha_1v_1 + \alpha_2v_2 + ... + \alpha_{n-1}v_{n-1}

​In such a scenario, the area formed by the (hyper)parallelogram by the "n vectors" (the determinant) would be zero.

Another simpler example, consider a 2×22 \times 2​ matrix where v1=2v2v_1 = 2v_2​. In such a case, the area of the parallelogram is zero.

Last updated