⚛️
Linear Algebra
  • Basic Operations
  • Norms
  • Vector Properties
  • Matrix Properties
  • Special Matrices & Vectors
  • Eigen Decomposition
  • Quadratic Forms & Positive Definiteness
  • Singular Value Decomposition
Powered by GitBook
On this page
  • Eigen Vectors
  • Eigen Values
  • Eigen Decomposition Derivation​

Eigen Decomposition

PreviousSpecial Matrices & VectorsNextQuadratic Forms & Positive Definiteness

Last updated 2 years ago

Eigen Decomposition is extremely useful for square symmetric matrices.

The physical interpretation can be given as: "Every real matrix can be thought of as a combination of rotation and stretching."

Av→=w→A∈Rn×nv→∈Rn×1w→∈Rn×1A\overrightarrow{v} = \overrightarrow{w} \\ A \in \mathbb{R}^{n \times n} \hspace{0.5cm} \overrightarrow{v} \in \mathbb{R}^{n \times 1} \hspace{0.5cm} \overrightarrow{w} \in \mathbb{R}^{n \times 1}Av=wA∈Rn×nv∈Rn×1w∈Rn×1

Eigen Vectors

Eigen Vectors of a matrix are those special vectors that only stretch under the action of a matrix.

Eigen Values

Eigen Values are the factor by which eigen vectors stretch.

Av=λvAv = \lambda vAv=λv

Eigen Decomposition Derivation​

Eigen Decomposition is that set of vectors which only stretch under the action of matrix AAA​. Let's say, A(Rn×n)A (\mathbb{R}^{n \times n})A(Rn×n)​ has nnn linearly independent eigenvectors:

{v1,v2,v3,...,vn}\begin{Bmatrix} v^1, v^2, v^3, ..., v^n\\ \end{Bmatrix}{v1,v2,v3,...,vn​}

Then, we concatenate the corresponding eigen values into a diagonal matrix:

For real symmetric matrices, we have real eigen vectors and values:

Note: Eigen Decomposition may not be unique.

​Concatenate all the vectors (as columns) and make a eigen vector matrix VVV​.

V=[v1v2...vn]V = \begin{bmatrix} v^1 & v^2 & ... & v^n\\ \end{bmatrix}V=[v1​v2​...​vn​]
Λ=diag(λ1,λ2,...,λn)\Lambda = diag(\lambda_1, \lambda_2, ..., \lambda_n)Λ=diag(λ1​,λ2​,...,λn​)

Eigen Decomposition ​(Factorisation) of AAA​ is given by the following equation:

A=VΛV−1A = V\Lambda V^{-1}A=VΛV−1
A=QΛQTwhereQT=Q−1A = Q \Lambda Q^T \hspace{0.3cm} where \hspace{0.1cm} Q^T = Q^{-1}A=QΛQTwhereQT=Q−1

Thus, QQQ is orthogonal. This also means QQQ​ is a rotation matrix. So, for the following action:

Av=QΛQTvAv = Q \Lambda Q^TvAv=QΛQTv

​QTvQ^TvQTv​ rotates the vector vvv​ in the direction of the eigen vector. Then, Λ(QTv)\Lambda(Q^Tv)Λ(QTv)​ stretches the vector vvv​. Finally, Q(ΛQTv)Q (\Lambda Q^Tv)Q(ΛQTv)​ rotates vvv​ back to its original direction.

Page cover image