⚛️
Linear Algebra
  • Basic Operations
  • Norms
  • Vector Properties
  • Matrix Properties
  • Special Matrices & Vectors
  • Eigen Decomposition
  • Quadratic Forms & Positive Definiteness
  • Singular Value Decomposition
Powered by GitBook
On this page

Quadratic Forms & Positive Definiteness

Quadratic Form is also called "Weighted Length", given by the following equation:

xTAx=∑ijxixjAij=scalarx^TAx = \sum_{ij}x_ix_jA_{ij} = scalarxTAx=ij∑​xi​xj​Aij​=scalar

​Positive Definite (P.D.) matrix has all eigen values greater than 0. A positive definite matrix has the property, xTAx>0,∀x≠0x^TAx > 0, \forall x \neq 0xTAx>0,∀x=0​. For example, consider the following:

A=I=[100010001]A = I = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}A=I=​100​010​001​​

​Thus, xTAx=xTx>0,∀x≠0x^TAx = x^Tx > 0, \forall x \neq 0xTAx=xTx>0,∀x=0​.

A positive semi definite (P.S.D.) matrix has all eigen values greater than or equal to 0. A positive semi definite matrix has the property that xTAx≥0,∀x≠0x^TAx \geq 0, \forall x \neq 0xTAx≥0,∀x=0​. For example, consider the following:

A=[100010001],x=[001]A = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}, \hspace{0.1cm} x = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}A=​100​010​001​​,x=​001​​

​We can compute to observe xTAx=0x^TAx = 0xTAx=0​.

Similar definitions exist for negative definite and negative semi definite matrices as well.

PreviousEigen DecompositionNextSingular Value Decomposition

Last updated 2 years ago

Page cover image